Created: 2014-05-19 17:47
Updated: 2019-01-14 17:59
License: epl-1.0

This README is just a quick overview of the Skream project.


Skream is a high-performance time-series library with memory-footprint guarantees. The name is short for "online SKetching and stREAMing," and is pronounced like "scream" in English. For scalability, Skream is written in Clojure and has zero side-effects. The library includes a simple RESTful web-service for clients.


skream artifacts are released to Clojars.

If you are using Maven, add the following repository definition to your pom.xml:


The Most Recent Release

With Leiningen:

[skream "0.0.2"]

With Maven:



Skream views a time-series as a simple sequence of numbers. These numbers are read sequentially and in order, with minimal state maintained. These sequences can be sensor readings from an Internet -of- things project, or stock prices in an HFT strategy.

What queries does a Skream currently support?

  • Basic summary statistics (count, minimum, maximum, sum, mean / average)
  • Variance & standard deviation
  • Skewness & kurtosis
  • Arbitrary higher-order moments (standardized & unstandardized)
  • Range counts
  • Gaussian range counts (e.g. count of elements within 0.42 standard deviations)
  • Histograms (evenly-spaced & Gaussian bins)
  • Exponential moving average
  • Simple moving average
  • Approximate membership (via Bloom filters)
  • Approximate individual element counts (via Count-Min sketches)
  • Distinct element count (via HyperLogLog sketches)
  • Approximate median (via P2 algorithm)
  • Approximate arbitrary quantiles (e.g. 25% "median")
  • Approximate mutual information between two Skreams (via histograms)

All of these queries are supported with a fixed memory footprint, new numbers added sequentially or in an online sense. The exception is simple moving average queries, which require a window of recent numbers maintained as state.


Skream includes a simple command-line interface for experimenting and testing. First clone the Git repository, and then build & run locally using the usual lein executable:

$ git clone
$ cd skream; lein run
>>> SKREAM 10162

The first header line written to STDERR indicates that a single empty Skream is ready to accept numbers. The header line also reports the PID of the underlying JVM process (e.g. 10162).

Next send a command to tell the Skream which queries to track. For a simple test, just use the "track-default" convenience function that tracks a handful of common, useful statistics. Type the following as STDIN input:

(track-default *sk*)

The *sk* earmuffed root variable refers to the process' single Skream. The server responds with the empty Skream, but it is now tracking some statistics and ready for queries:

{:min nil, [:unstd-moment 2] nil, [:moment 4] nil, [:moment 2] nil, :mean nil, [:win 5] [], :skew nil, :kurt nil, [:unstd-moment 4] nil, [:quantile 0.5] nil, :stdev nil, [:moment 3] nil, :max nil, [:unstd-moment 3] nil, :count 0, :last nil, :sum 0}

The Skream is printed to the console as a Clojure map literal (s-expression). Now you can send a stream of numbers to the same process, by entering numbers as STDIN input one -per- line:


The server responds with a Skream that has seen one number:

{:min 42.42, [:unstd-moment 2] 0, [:moment 4] 0, [:moment 2] 0, :mean 42.42, [:win 5] [42.42], :skew 0, :kurt 0, [:unstd-moment 4] 0, [:quantile 0.5] {:quantile nil}, :stdev 0, :sum-sq-diffs 0, [:moment 3] 0, :median nil, :max 42.42, [:unstd-moment 3] 0, :count 1, :last 42.42, :sum 42.42}

If you pass a number to this interface (e.g. "42.42" above), this is interpreted as a new number to be added to the Skream. In every other case (e.g. the "track-default" function call), the result becomes the new Skream itself.

Next we restart the process, and add a short time-series of recent closing prices of the SPY ETF traded on the NYSE:

...hit (Ctrl-C) or (Ctrl-D)
$ lein run  # from user
>>> SKREAM 11193
(track-default *sk*)  ; from user
{:min nil, ..., :sum 0}
188.74  ; from user
{:min 188.74, ..., :sum 188.74}
187.55  ; from user
189.13  ; from user
195.94  ; from user
195.88  ; from user

The final response from the server process shows some useful statistics that have been calculated on the fly:

{:min 187.55, [:unstd-moment 2] 157.20218399999857, [:moment 4] 54.60116919834653, [:moment 2] 24.0, :mean 193.17920000000004, [:win 5] [194.83 196.26 196.48 195.94 195.88], :skew -0.6849247938368417, :kurt -0.49252635219653795, [:unstd-moment 4] 2342.5917520379735, [:quantile 0.5] {:quantile 193.72229, :qs [187.55 191.74467 193.72229 195.5992 196.48], :ns [1 7 13 19 25], :dns [0 1/4 1/2 3/4 1], :nps [1 7N 13N 19N 25]}, :stdev 2.5593145566733178, :sum-sq-diffs 157.20218399999857, [:moment 3] -15.123139447917465, :median 193.72229, :max 196.48, [:unstd-moment 3] -253.52042674559698, :count 25, :last 195.88, :sum 4829.48}

Note the higher moment like kurtosis (-0.49ish) and median (about 193.72), estimated without maintaining a full history of the stock prices.


Skream is released under the Eclipse Public License, so you can easily incorporate the library into your commercial or non-commercial projects.


Skream is a Leiningen Clojure project with decent automated test coverage. The main data-structure are simple Clojure maps with sequential updates handled by functions in map metadata.


Everything is done without side-effects, in-memory, and with only the minimal amount of state. This provides fundamental scalability across large time-series. Side-effect-less updates are done in parallel, utilizing every core (CPU) on the server.

Cookies help us deliver our services. By using our services, you agree to our use of cookies Learn more